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In this work we present a method for simulating the electron-vibration coupling in adsorbate molecules
using a tight-binding formalism for the electronic degrees of freedom and a real-space description of the
molecular vibrations. First, we derive a formalism which is very transparent in recognizing the effect of a local
vibrational perturbation on the local electronic structure at any location. Second, we apply the method to
nonresonant inelastic electron-tunneling spectroscopy �IETS� of two sample molecules on generic model
substrates as typically accessible within a scanning tunneling microscopy �STM� experiment. The foremost
observation is that the intensity of the STM-IETS signal is not necessarily strongest in the spatial vicinity of the
vibrational perturbation. Instead, it is dependent on the delocalization of the molecular orbitals, which may lead
to a strong intensity quite far from the vibration. Since this is an effect of the electronic structure and not
related to the transfer of the vibrational motion itself, the molecular orbitals can be treated as “carrier waves”
of the signal from a vibrational perturbation. This effect may be important in determining the orientation of an
adsorbed molecule on a substrate surface or in manipulating adsorbed molecules with an STM tip.
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I. INTRODUCTION

Application of scanning tunneling microscopy to inelastic
electron-tunneling spectroscopy �STM-IETS� in small mo-
lecular adsorbate systems has attracted a lot of activity
recently.1–5 Good spatial resolution has made it possible to
measure d2I /dV2 spectra at a chosen position above the ad-
sorbate molecule, or even make a topographic map of vibra-
tional modifications to the local electronic structure. Interest-
ingly, the STM-IETS signal for localized molecular
vibrations can be observed quite far away from the spatial
location of a chosen vibration mode.6,7 Since the interpreta-
tion of d2I /dV2 spectra and corresponding topographic maps
is far less obvious than scanning tunneling spectra �STS� and
dI /dV maps, it is obvious that computational methods with a
strong interpretational ability are required.

The best known theoretical approach to analyzing and
predicting STM-IETS results is the standard Tersoff-Hamann
approach8 as generalized to take electron-vibration coupling
into account.9,10 In order to improve recognition of different
modes, symmetry selection rules have been incorporated into
this theory by Lorente et al.11 The transparency of theoretical
calculations can be taken a step further by utilizing Green’s-
function methods in an atomic- or molecular-orbital basis.
Especially the formalism independently derived by
Todorov12 and Pendry13 has proven very useful in decompos-
ing the tunneling signal into tunneling channels,14 and there
is no restriction against applying channel analysis to inelastic
tunneling. Inelastic effects have been incorporated into STS
calculations at least in connection with high-temperature
superconductivity.15

In the following, we consider inelastic tunneling in the
framework of tunneling channels and paths,16 especially in-
tramolecular paths. This is possible in the case of delocalized
frontier orbitals �FOs�, if they are not too strongly mixed
with the substrate wave functions. In principle, this decou-
pling of the adsorbate from the substrate would require either
adsorption on an insulating layer or physisorption on a metal
surface. This work is very much inspired by the experiments
described in the supporting material included with Ref. 4 on
meta-dichlorobenzene �MDCB� molecules on Au�111�,
where the vibrational signal strongly depends on the position
of the tip.

In order to get generic and transparent results, we apply
model substrates with either constant or Lorentzian density
of states, which couples to the electronic structure of the
molecule in the form of a self-energy. As examples, we con-
sider two substituted benzene molecules: chlorobenzene
�CB� and MDCB. Because their frontier molecular orbitals
are of � type, the vibrational modes of these molecules are
modeled with bosonic couplings to the pz orbitals of the
chlorine atoms and the adjoining carbon atoms.

Although we attempt to keep this study generic, we
choose these two molecules due to their symmetry and fa-
vorable frontier orbitals for demonstrational purposes. First,
the molecules are rather simple and survive adsorption onto a
noble-metal surface without considerable structural changes.
Second, some of the vibrational modes can be characterized
mainly by stretching and/or bending of carbon-chlorine
bonds, which simplifies the analysis of motion in the local
basis where electronic degrees of freedom are described in
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tight-binding formalism and molecular vibrations are consid-
ered in terms of real-space motion.

The present study is restricted to nonresonant tunneling
through an adsorbate molecule with a relatively wide gap
between the states which are �energetically� close to the
highest occupied and lowest unoccupied molecular orbitals
�HOMOs and LUMOs, respectively�. Hence, the tunneling
takes place through a tail of the surface wave functions only
slightly mixing with those so-called frontier orbitals. Since
the vibrational energies are very small as compared to the
gap in the electronic spectrum, the vibrations open an inelas-
tic channel through the molecule, which will be shown in the
following sections. It is crucial in this case that the local
density of states �LDOS� around Fermi energy varies only
moderately as a function of energy, and thus the fingerprints
of vibrational excitations are simple to recognize. There are
also two essential assumptions done: first, the vibrational
modes are local, i.e., they can be clearly attributed to the
motion of a finite group of atoms. Second, the frontier orbit-
als are delocalized. In such a case, we expect that the signal
from a localized vibrational mode is strongly spatially ex-
tended.

Within this framework, we show that electronic orbitals
act as carrier waves for a vibrational signal, i.e., the obser-
vation of this signal at a certain position does not necessarily
mean that the vibration itself is extended to the site of obser-
vation. Furthermore, we find a strong nontrivial spatial de-
pendence of the observed IETS signal. This effect may be
helpful in determining the adsorption geometry of molecules,
whose internal structure may be difficult to resolve from a
topographic STM image.

II. THEORY

We model inelastic tunneling through the chosen mol-
ecules by utilizing the equilibrium Green’s-function descrip-
tion of the molecule-substrate system and the vibrational
modes. Although transport calculations concerning nano-
structures between metallic leads should, in general, be per-
formed using nonequilibrium Green’s function methods, it is
still very much the state of the art in STM and STS calcula-
tions to equate the differential conductance to the local den-
sity of states of the sample at the position of the tip. This
entity, on the other hand, is related to the equilibrium Green’s
function of the system. Although our formulation of the STS
spectrum differs from, for example, the standard Tersoff-
Hamann approach,8 the applied equations fall into the same
category of equilibrium calculations.

In this section, we present our theory before its numerical
evaluation in the next section as follows: first, we construct
the Green’s function of a free molecule in the tight-binding
basis in Sec. II A and derive generic self-energy formulas for
both the substrate and electron-vibration coupling �Secs.
II A 1 and II A 2, respectively�. Then, in Sec. II B, we dis-
cuss the relation between Green’s function in tight-binding
basis and the Todorov-Pendry �TP� tunneling equation.12,13

TP approach can be rephrased in terms of spectral terms
including matrix elements of retarded and advanced Green’s
function and the imaginary part of the total self-energy,

which formally is similar to the nonequilibrium Landauer-
Büttiker approach as formulated by Meir and Wingreen.17

Although we consider the equilibrium Green’s-function
limit, this representation is able to expose the matrix ele-
ments of the density matrix explicitly for further tunneling
channel analysis. This relation between the approaches pro-
vides a fairly straightforward way to include vibrational
modes, as employed in our recent STS analysis of high-
temperature superconductors.15 The equations derived here,
on the other hand, are generalizations of the elastic and in-
elastic terms by Lorente and Persson.10

A. Constructing the molecular Green’s function

Let us start with a Hamiltonian H0 for a free molecule,
which is diagonal in the molecular-orbital basis. As dis-
cussed in Ref. 14, the Green’s function in an atomic-orbital
basis G�� can be written using the energies and linear com-
bination coefficients of molecular orbitals,

G��
0 �E� = �

�

�����G��
0 �E������=�

�

c�
����c����

E − E� + i�
. �1�

Here we used molecular orbitals ��� with energies E� such
that

H0��� = E����

and their expansion into atomic orbitals with expansion co-
efficients c���� ���

��� = �
�

�������� = �
�

c������� .

The Green’s function of an unperturbed molecule can be
coupled to a substrate Green’s function and molecular vibra-
tions by utilizing Dyson’s equation. If we concentrate on the
Green’s function of the coupled molecule, an appropriate
way to include substrate and vibrations is to write self-
energy matrices for both of them,

��� = ���
a−s + ���

e−v, �2�

�a−s is used to model the adsorbate substrate and �e−v refers
to the electron-vibration coupling. Unless otherwise indi-
cated by a superscript, G and � refer to retarded Green’s
Functions and self-energies, respectively. We will discuss the
form of the terms in Secs. II A 1 and II A 2, respectively.
Here we notice that self-energy terms can serve at least two
purposes: first, the system is divided into several regions—
such as tip, adsorbate, and substrate—one can concentrate on
a chosen region �adsorbate� by modeling the rest of the sys-
tem by a self-energy matrix. Second, many-body effects,
such as electronic excitations or electron-boson couplings
can be effectively taken as a term shifting and broadening,
i.e., dressing eigenstates of the electrons of the noninteract-
ing system.

The effect of the self-energy terms can be incorporated to
the Green’s function in a standard way by solving the Dys-
on’s equation,
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G = G0 + G0�G = G0 + G0TG0, �3�

where T is the transition matrix. A clever way to obtain the
exact solution and keep track on the effects of distinct ele-
ments of self-energy is to express the self-energy as a sum of
1�1 diagonal blocks and 2�2 blocks with zeros in the
diagonal. It is simple to derive the corresponding T matrix
for each block and apply Dyson’s equation successively,

G��
n+1 = G��

n + G�i
n Tij

n Gj�
n , �4�

where Tij
n is a functional of the Green’s function Gn of the

nth step and the chosen self-energy block �ij of the present
step. Note that i and j run over all the orbital pairs of the
system. The idea of this algorithm is originally presented in
Ref. 18.

First, let us consider the transition matrix corresponding
to a 1�1 diagonal block �ii and the corresponding T matrix
to derive Gn+1 from Gn. It is easy to see that a single term
leads to the expression,

Tii
n =

�ii

1 − �iiGii
n . �5�

Second, let us look at 2�2 blocks of the form

� = � 0 �ij

� ji 0
� .

The corresponding transfer matrix is �see Ref. 18�

Tij
n =

1

Det
� �ijGjj

n � ji �ij�1 − Gij
n � ji�

� ji�1 − Gji
n �ij� � jiGii

n�ij
� , �6�

where Det= �1−Gij
n � ji��1−Gji

n �ij�−� jiGii
n�ijGjj

n .
As an example, let us look at the effect of a perturbation

by a term Tij to an arbitrary off-diagonal element between
orbitals ��� and ���. From Dyson’s equation, one can readily
extract the change in the Green’s function due to the self-
energy

�G���E� = G�,1
0 TijG1,�

0 =�
�,	

c�
����c��	�c1

��	�c1���Tij

�E − E� + i���E − E	 + i��
.

�7�

Since this determines the change in the elements of the den-
sity matrix, �
��=− 1

�I��G���, it is straightforward from
Eq. �7� to make a partition into an elastic part

�
��
el = 
�i

0
R�TijGj�

0 � + R�G�i
0 Tij�
 j�

0 �8�

and inelastic part

�
��
inel = −

1

�
R�G�i

0 Gj�
0��I�Tij� , �9�

which is an obvious generalization of the formulation of
Lorente and Persson in Ref. 10. It should be noted that
within the gap, the density of states is very low and thus the
corresponding tunneling channel is essentially inelastic.

In the case of nonresonant tunneling in the neighborhood
of the Fermi energy, it can be assumed that �E−E���0.
Hence, the change in the density matrix due to the perturba-
tion can be written approximately

�
���E� = −
1

�
R�G�i

0 Gj�
0��I�Tij�

	I�Tij��
�,	

c�
����ci���c�

��	�cj�	�
�E − E���E − E	�

. �10�

Considering Eq. �5�, we notice that Tii	�ii in the neighbor-
hood of EF since G�E� is small at energies far from the
eigenstates E�. Therefore, the possible kinks to the LDOS
result from discontinuities typical to the imaginary part of
the self-energy. This means that the kinks coincide rather
accurately with the vibrational mode energies. Since the
IETS signal is proportional to the derivative of the LDOS �or
the density matrix�, these kinks are seen as peaks in experi-
ments. In reality, however, the steps are smoothened since
the molecular vibrations couple to the surface phonons. In
addition, the wave functions of the substrate interact with the
molecular orbital and therefore the imaginary part of G�� is
not necessarily zero.

1. Self-energy model of the substrate

The molecule-substrate self-energy is written in the stan-
dard way �the term “contact self-energy” is used, see, e.g.,
Refs. 19 and 20�,

���
a−s = V�sGss�

0 Vs��, �11�

where Gss� is the Green’s function for the substrate. In gen-
eral, the matrix elements of the substrate Green’s function
can be calculated from the density matrix 
ss�, whose diago-
nal elements give the local density of states,

Gss�
0 �E� =
 
ss��E��

E − E� + i�
dE�. �12�

This relation could, in principle, be used to include any kind
of electronic structure of the surface to tunneling simula-
tions. In order to keep the computations transparent, we re-
duce the substrate to as simple a form as possible and assume
a diagonal self-energy with a constant coupling V�s to the pz
atomic orbitals of the adsorbate molecule.

If we assume a constant LDOS for the substrate with fi-
nite band width W and construct the full self-energy with the
Kramers-Kronig transformation. The final form of the self-
energy is

���
a−s�E� = −

�V�s�2

2�W
ln�E − Es + i� − W

E − Es + i� + W
� . �13�

Another simple approximation is the narrow Lorentzian
band,

���
a−s�E� = �V�s�2

1

E − Es + iW
. �14�

These two examples can be used �with different widths� to
model two extreme examples of �1� a wide-band substrate
and �2� a substrate with localized states at the surface.

2. Electron-vibration self-energy

While constructing the Green’s function for electrons is
relatively straightforward, an exhaustive modeling of the
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electron-vibration coupling is much more elaborate. There
may be several vibrational modes, whose coupling to elec-
tronic degrees of freedom is strongly selective due to sym-
metry. In addition to such symmetry considerations, the den-
sity of vibrational modes is needed in order to derive the
appropriate self-energy terms. As soon as this difficult part of
the problem is solved, one can straightforwardly apply Dys-
on’s equation to calculate the perturbation of the electronic
structure by the molecular vibrations. The appearance of the
perturbation at a chosen position is, in part, governed by the
structure and symmetry of the molecule.

In the Appendix, we present the equations for electron-
vibration self-energy, which are used in similar form quite
frequently in the literature for modeling spectroscopies.21

One feature is the explicit derivation in the atomic orbital
and atomic displacement basis. In principle, it is possible to
write the vibrational modes in terms of two bases. Usually,
one assumes the generalized coordinate basis Qq, which di-
agonalizes the vibrational Hamiltonian, and gives the eigen-
frequencies �q and the symmetry of each mode. However,
the basis more closely related to the TB basis of electronic
degrees of freedom is the one where real-space displace-
ments of atoms are considered. In addition, we show the T
→0 K limit result in tight-binding formalism, which is uti-
lized in this study. In that limit, the self-energy is propor-
tional to the convolution of the LDOS of the electrons and
the vibrational—or in a more general case other bosonic—
excitations, as shown in Eq. �A22�.

For the present calculations we use some additional sim-
plification according to the following assumptions: First, the
modeled vibrational mode is localized to a certain bond be-
tween two atoms. This simplifies the vibrational density of
states occurring in Eq. �A22� to gIJ���=IJ��−�q�. Then
we take the generic choice, where 
�=− 1

� Im�G��=�
,
which is constant. Finally, we assume only diagonal terms
��� for electron-vibration self-energy. This is a fairly good
choice for nonresonant tunneling in which case the variations
are expected to be small within the range of the vibrational
energy. This approximation has been widely used in spec-
troscopies of high-temperature superconductivity to model
the effect of low energy bosonic coupling to the
quasiparticles.22

Using these approximations in Eq. �A22�, we arrive at the
following functional form for the self-energy:

���
e−v�E� = A ln���q − E − i�

��q + E + i�
� , �15�

where A is a coupling coefficient, which we detail on below,
and � a convergence parameter. This is the self-energy for
the retarded Green’s function and hence it is constructed
from Eq. �A22� by performing the convolutions for positive
and negative energies separately, combining these results and
taking the Hilbert transformation to obtain both parts of the
Green’s function.

Explicit approximations similar to Eq. �15� have been
used especially in modeling angular resolved photoemission
spectroscopy. For example, in Ref. 21 a corresponding ex-
pression has been shown for the Debye model of phonons

combined to a constant density of states of electrons.
We now discuss how the coupling coefficient A can be

estimated. According to Eq. �A24� it has the form

A =
��

2�q

 =

�

2�q
�MI

���2
 =
1

2�q

�

mI
� �V��

�RI
�2


 �16�

with hopping integral V�� and mass mI of the oscillating
atom. For the sake of order-of-magnitude calculation, we as-
sume that �=�, =�, and J= I. If we consider the Slater-
Koster-type scaling of tight-binding hopping integrals, they
are generally of the form23

V�� =
�2

me
Oll�m

1

RI
2 , �17�

where a numerical value of �2

me
=7.62 eV Å2 is inserted. The

parameter Oll�m is generally on the order of 1 but, e.g, for �
type overlap between two p orbitals, it is 3.24. The derivative
with respect to the atomic distance is

�V��

�RI
= −

2

RI
V��. �18�

With atomic mass in atomic units, mI=�u, we end up with

A =
�

2�q

4

�uRI
2V��

2 
 =
�2

u

1

��q

2

�RI
2V��

2 
 , �19�

where �2

u =4.18 meV Å2 is also a useful shortcut to notice.

B. Simulation of tunneling current

To compute the tunneling spectra we apply the Todorov-
Pendry expression12,13 for the differential conductance � be-
tween orbitals of the tip �t , t�� and the sample �s ,s��, which
in our case yields

� =
dI

dV
=

2�e

�
�

tt�ss�


tt��EF�Vt�s
ss��EF + eV�Vs�t
† . �20�

Here the density matrix


ss� = −
1

�
I�Gss�� = −

1

�
�
�

Gs�I�����G�s�
− �21�

is, in fact, the spectral function written in terms of the
retarded/advanced Green’s functions and the self-energy.24

The latter formalism leads to the equilibrium Green’s-
function limit of the Landauer-Büttiker approach, analogous
to formulation by Meir and Wingreen.17,20

Equation �20� differs from the more commonly used
Tersoff-Hamann approach8 in that it takes—in its general
form—into account the details of the symmetry of the tip
orbitals and their overlap with the surface orbitals. In this
work, we also use a simplified version of Eq. �20�, which
assumes that the tip probes only one atomic orbital of the
molecule at a time. Hence, we take dI

dV �r��
�r�, where 
�r�
= �r ���
���� �r�. Or if we simply look at the matrix element
of the partial differential conductance, it is sufficient to con-
sider the term
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 dI

dV
�Vb��

��

� 
���EF + eVb� . �22�

Furthermore, the partial IETS signal is approximated by sim-
ply taking a derivative of the differential conductance with
respect to the bias voltage,

 d2I

dV2 �Vb��
��

�
d
��

dE
�EF + eVb� . �23�

Equations �22� and �23� are the two equations we use in
simulating the spectra and the maps of the following sec-
tions. Since the present calculations are performed for very
small bias voltages, we make a further simplification of
dropping off the prefactors, since for a short energy range,
the density of states of the tip can be assumed constant.

III. MODEL AND SIMULATIONAL DETAILS

A. Substituted benzene molecules

As commonly known, the C6h symmetry of benzene leads
to double degenerate �-type HOMOs and LUMOs. In a sub-
stituted benzene molecule, the symmetry is broken so that
frontier orbitals have a defined parity. In this work, we study
benzene molecules, where hydrogen atoms are replaced with
chlorides forming CB and MDCB molecules, which lower
the symmetry of the molecule to C2v. The geometries of
gas-phase CB and MDCB have been calculated based on
density-functional theory with the approximation for the
exchange-correlation functional due to Perdew and Wang
�generalized gradient approximation-PW91� �Ref. 25� as
implemented in the Vienna ab initio simulation program
�VASP�.26 Blöchl’s projector augmented wave method27 is ap-
plied to treat the electron-ion interaction using the settings
from the VASP database.28 To decouple periodic images the
structural relaxations are performed in sufficiently large
simulation cells of 15 Å�15 Å�10 Å employing M point
sampling and stopped when the forces are smaller than
0.02 eV /Å. The results agree within 0.02 Å—sufficient for
the accuracy level of this study—with the results that have
been obtained previously and based on which a vibrational
analysis has been performed.29,30

The following tables show the linear combination coeffi-
cients of the atomic pz orbitals for the FOs of an unsubsti-
tuted benzene molecule in Table I, a CB molecule in Table II,
and an MDCB in Table III. The molecular orbitals have been
calculated using TB, with exponential Slater-Koster hopping

integrals.31 The coefficients are used in calculating the un-
perturbed Green’s function using Eq. �1�. The numbering of
the atomic orbitals is shown in Fig. 6 �right�, with benzene
only having the carbons �atoms 1–6�, CB the carbons plus
one chlorine �1–7�, and MDCB having all of the atoms �1–
8�. The molecular-orbital calculations have been done for
systems containing hydrogen 1s orbitals, and the 2s and 2p
orbitals for carbon. Since the s, px, and py orbitals have neg-
ligible contributions to the �-type frontier orbitals, they are
omitted.

Isosurfaces of the molecular orbitals for benzene, chlo-
robenzene, and dichlorobenzene are shown in Fig. 1, indicat-
ing how the CB and MDCB orbitals are formed from the
benzene orbitals. The CB HOMO-1 orbital is clearly the ben-
zene HOMO-1 orbital, with no contributions from the chlo-
rine, whereas the MDCB HOMO is formed from the same
orbital with large contributions from the chlorines. Similarly
the CB HOMO and MDCB HOMO-1 are formed from the
benzene HOMO orbital, with the chlorines contributing quite
strongly. The CB LUMO+1 and MDCB LUMO orbitals are
formed from the benzene LUMO, with no contribution from
the chlorine in CB and slight contributions from the chlo-
rines in MDCB. And finally the CB LUMO and MDCB
LUMO+1 are formed from the benzene LUMO+1 orbital
with slight contributions from the chlorine orbitals. Here one
should note that the benzene MOs are degenerate and the
employed naming is just to distinguish between the two dif-
ferent orbitals.

B. Substrate model

For a substrate, we apply both the narrow- and wide-band
extremes as in Eqs. �13� and �14�. In Fig. 2�a� a representa-
tive image of a wide-band self-energy is shown while �b�

TABLE I. The linear combination coefficients of carbon pz or-
bitals for the frontier orbitals of benzene. The even MOs are de-
noted by “g” and the odd MOs are denoted by “u.”

p orbital HOMO�g� HOMO�u� LUMO�u� LUMO�g�

1 −1.00 0.00 0.00 −1.00

2 �6� −0.50 −�+�1.00 +�−�0.50 0.50

3 �5� 0.50 −�+�1.00 −�+�0.50 0.50

4 1.00 0.00 0.00 −1.00

TABLE II. The linear combination coefficients of carbon and
chlorine pz orbitals for the frontier orbitals of chlorobenzene.

p orbital HOMO-1�u� HOMO�g� LUMO�g� LUMO+1�u�

1 �3� +�−�0.51 0.31 0.31 +�−�0.49

2 0.00 0.46 −0.59 0.01

4 �6� −�+�0.49 −0.14 0.27 +�−�0.50

5 0.00 −0.41 −0.56 0.01

7 0.00 −0.63 0.11 0.00

TABLE III. The linear combination coefficients of carbon and
chlorine pz orbitals for the frontier orbitals of
meta-dichlorobenzene.

p orbital HOMO-1�g� HOMO�u� LUMO�u� LUMO+1�g�

1 −0.55 0.00 0.00 −0.58

2 �6� −0.28 −�+�0.34 +�−�0.50 0.31

3 �5� 0.09 −�+�0.42 −�+�0.49 0.27

4 0.24 −0.00 0.00 −0.56

7 �8� 0.48 +�−�0.45 −�+�0.10 −0.06
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depicts the Lorentzian narrow-band limit. We use substrates
with both constant and Lorentzian LDOS distributions with
widths of 1, 5, and 10 eV. The mean values are chosen to
coincide with the Fermi energy �0 eV� and the vicinity of the
HOMO �−2.5 eV� and LUMO �2.5 eV� states. The wide
choice of widths is to probe the difference between the ex-
tremes of narrow- and wide-band substrates. We assume here
a diagonal self-energy and a Slater-Koster32 kind Vs� be-
tween the tip and each pz orbital of the adsorbate molecule.

C. Vibrational modes

There is a large variety of vibrational modes for both CB
and MDCB. In principle, we could derive a density matrix
gIJ��� with Eq. �A14� by summing over all the vibrational
modes of the molecules. However, in this study we are trying
to select specific vibrational modes related to the Cl-C
bonds, and especially modes coupled to the frontier orbitals.
Hence there are two issues to consider: first, the linear com-
bination coefficients �I �q� must be significant and second,
the coupling term MI

�� must be large. We are using the cal-
culated modes from Refs. 29 and 30.

For MDCB the lowest mode with a considerable contri-
bution from vibration of chlorine is the A1 symmetric mode
with ��q=24 meV. This is, however, an invisible mode
since the vibration takes place mainly in a direction perpen-
dicular to the bond. Hence, the derivative of the hopping
integral between the pz orbitals of Cl and C practically van-
ishes.

The next possible mode is the A1 symmetric mode with
��q=48 meV. If the movement of the Cl and C atoms are
projected onto the bond direction, we obtain a coefficient

�I �q�	0.30 where the derivative is largest. Since the contri-
bution of the corresponding part of the vibration is the square
of this coefficient, and there are two bonds, the vibration of
Cl in the direction of the bond gives a contribution of 0.18 of
the total vibration mode, which is a relatively high value

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIG. 1. �Color online� Isosurfaces of the benzene �top row�, chlorobenzene �middle row�, and dichlorobenzene �bottom row� molecular
orbitals, showing how the frontier molecular orbitals of the molecule are constructed from atomic pz orbitals.

FIG. 2. �Color online� The real �� and imaginary �� parts of the
substrate self-energy for both the �a� wide-band and �b� the narrow-
band examples.
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when compared to other modes in the neighborhood. The
atomic motion of those two vibrational modes for MDCB is
depicted in Fig. 3, which is taken from Ref. 30.

With similar arguments, a vibrational mode of A1 symme-
try, with ��q=50 meV is chosen for CB. Similarly we ob-
tain a coefficient �I �q�	0.31, which is of the same size than
for the mode chosen for MDCB.

For the simulations, we use these vibrational modes to
create the density matrix for molecular vibrations,

gIJ��� = �� − �q���I�q��2IJ. �24�

which, for simplicity, we assume diagonal as already dis-
cussed before in Sec. II A 2. To obtain the self-energy
���

e−v��� using the approximate expression �15� also discussed
in that section, we choose �=12, r=1.0 Å, V=1.0 eV, and

=1.0 eV−1 resulting in a coupling coefficient A
	13.4 meV. In our practical calculations, we give values
between 2.5 and 12.5 meV for this prefactor, mainly depend-
ing on the LDOS of the substrate at the Fermi energy. Figure
4 shows that for these parameters the imaginary part of the
self-energy exhibits clear steps and the real part distinct
peaks at the energy of the vibration both at positive and
negative energies.

IV. RESULTS

In the following, we consider the IETS spectra of CB and
MDCB molecules, and bring up the idea of a carrier wave

effect in delocalized molecular orbitals in the case of non-
resonant inelastic tunneling. In the first part, we demonstrate
how a local vibrational perturbation is seen in the local elec-
tronic structure of the molecule. In the second part, we create
spatial IETS maps and interpret them in light of the spectra.
In addition, we test how the electronic structure of different
substrates tends to distort the IETS map and what conse-
quences this has on detecting the carrier wave effect.

For the IETS maps, the most interesting bias voltages
correspond to the ���q edges of the self-energy. Hence, we
calculate the STS and IETS maps at the energies correspond-
ing to the chosen vibrational modes—−50 and 50 mV for CB
and −48 and 48 mV for MDCB. For a basic model of a
substrate, we use a 5 eV Lorentz LDOS with zero mean, and
the other parameter sets �see Sec. III B� are used to probe the
robustness of the carrier wave effect. Despite the wide choice
of substrate parameters we will not enter a more detailed
analysis of the substrate effect on the STS spectra and maps.
Instead, we just show a representative example of an STS
map for both molecules in the case of a wide-band substrate.

In order to see the IETS maps in contrast with the local
density of states, in Fig. 5 we show the calculated constant
height STS maps for both molecules at their negative vibra-
tional energies. Here we utilize the wide-band substrate
model. There is, in fact, very little variation in the dI /dV
mappings of either molecule with different substrates or bias
voltages. For CB the benzene appears quite ringlike, with the
carbons next to the chlorine-bonded carbon appearing most
pronounced in the images. The chlorine can be seen as a
separate protrusion from the benzene ring. In the case of
MDCB the benzene appears trianglelike, with the carbons
next to the substituted ones most visible. Once again, the
chlorines are seen distinctly separate from the benzene ring.
However, one should remember that these are idealized
simulated STM images with an infinitely sharp tip, with ac-
curacy not experimentally accessible.

We use diagonal elements of the orbitalwise partial spec-
trum of Eq. �23� to model the IETS spectrum at the position
of the atom corresponding to the chosen orbital. These atom-
specific IETS spectra for MDCB and CB are shown on the
left of Figs. 6 and 7, respectively, together with the corre-
sponding color codes on the right. Here the substrate is mod-
eled using a relatively wide Lorentz LDOS distribution, with

(a) (b) (c)

FIG. 3. �Color online� Two low-energy vibrational modes for a
free MDCB molecule �left and center�, and one vibrational mode
for CB �right�.

FIG. 4. Vibrational self-energy for �q=50 meV calculated us-
ing Eq. �A22� and Hilbert transformation. Note that the real part
���� shifts the states toward Fermi energy while the imaginary ����
part broadens the states outside the range −��q→��q.

(a) (b)

FIG. 5. �Color online� Constant height mappings of dI /dV at
2 Å above the plane of the CB �left� and MDCB �right� molecules
at negative bias voltages �−48 mV for MDCB and −50 mV for
CB�. The substrate has been simulated using a 5 eV wide Lorentz
LDOS distribution centered around the Fermi energy. The carbon
atoms have been marked in the images with crosses and the chlo-
rines with squares.
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a width of 5 eV centered around the Fermi energy.
While the electron-vibration coupling only creates a non-

remarkable kink to the dI /dV spectrum, the effect on its
derivative is much more obvious. The general shape of our
calculated spectra is very much like those from typical IETS
experiments, such as Ref. 7. Here we can see an antisymmet-
ric pair of peaks at positive and negative vibration energies
indicating the opening of inelastic tunneling channels above
the positive and below the negative bias voltage.

A general feature in these IETS spectra is that the local
spectrum at the Cl atoms seems to be shifted toward negative
values. The explanation for this is that the onsite energies of
pz orbitals of Cl atoms lie considerably below those of C
atoms. Hence, they strongly contribute to the occupied mo-
lecular orbitals below the gap but virtually not at all to the
unoccupied states above it. This means that the correspond-
ing matrix elements of the local density of states have a
decreasing tail for increasing energies within the gap. Con-
sequently, this creates a local negative background to the
IETS spectrum.

Thanks to the strong orientation of the pz orbitals of the
constituent atoms of the molecule, these spectra will bring up
the most salient features expected to be observed in the IETS
maps. Interestingly, while the chosen vibrational modes are
directly coupled only to the two Cl atoms �7,8� and the ad-
joining C atoms �2,6�, the vibrational peaks in the electronic
structure are strongest at C atoms 1, 3, and 5. The IETS
signal is moderate on top of the chlorines but on top of the
adjoining C atoms �2,6� it almost vanishes. This clearly dem-
onstrates the “carrier wave” effect, where the perturbation in

the electronic structure is not necessarily strongest at the site
of the vibration. Rather, it is the mutual contribution of the
atomic orbitals to the same frontier orbitals that seems to
determine the appearance of a strong signal at a chosen or-
bital.

The same general trend is seen in the simulated partial
d2I /dV2 spectra of the CB orbitals as shown on the left of
Fig. 7�a� �see accompanying color code on the right�. Again,
the shape of the simulated spectra corresponds nicely to
those generally obtained in experiments. For CB, the differ-
ence between the position of the electron-vibration coupling
and the site of a strong IETS signal is even more drastic. The
intensity is highest at C atom 5, at the end of the molecule
opposite to the chlorine, and it is also moderately strong at
the chlorine and carbons 1 and 3. At the carbon adjoining the
chlorine, the signal is again very weak.

Calculation of the IETS spectra for narrow-band sub-
strates and bands with the edge near Fermi energy create a
much more complex pattern. In such a case, the molecule-
substrate coupling creates new states to the gap, hence in-
creasing the proportion of resonant tunneling through the
molecule. Obviously, the carrier wave effect is still present
but the substrate gets mixed to the background of the IETS
spectrum in a subtle way, and hence predicting “brightest”
and “darkest” orbitals requires a detailed modeling of the
substrate. Nevertheless, the calculations with 5 and 10 eV
bands centered around the Fermi energy—both for constant
density and Lorentzian—show that the absence of strong
variations in the substrate electronic structure help retain the
general pattern of the spectrum.

The features of the IETS spectra also anticipate the fea-
tures of the IETS maps at different bias voltages. In the case
of moderately varying substrate states, the Cl atoms should
distinguish themselves as particularly dark structures at the
negative vibrational energy while the C atoms strongly
coupled to the electron-vibration perturbation should appear
particularly bright at the positive vibration energy. However,
for narrow structured bands, the shifting of the background
would make the structure of the maps much less predictable.

Figure 8 shows a set of IETS maps at negative voltages.
The maps of the top row are those of CB molecules on two
different substrates. The top left one is calculated for a 5 eV
Lorentz substrate centered around the Fermi energy. As ex-
pected, the signal is strong �negative� at the location of the
chlorine, and practically no signal at all comes through at-
oms 4 and 6. Carbons 1 and 3 and carbon 5 are rather clearly
seen, which also is in accord with the spectrum of Fig. 7. The
relatively high contrast of the carbon adjoining the chlorine
is mainly due to a constructive interference between the sig-
nals through atoms 1 and 3. This particular case is a very
clear demonstration of the carrier wave effect, where the
signal is seen at the opposite end of the molecule from the
position of the electron-vibration coupling. Furthermore, this
pattern very much resembles the HOMO of CB molecule
�see Fig. 1� since this is virtually the only FO, to which the
orbitals of Cl contribute.

This behavior breaks down at the narrow-band limit with
a 1 eV Lorentz LDOS. Figure 8 �top right� shows a repre-
sentative example of an IETS map in the case where the
center of the surface state is within a range from the Fermi

1

6 2

3

4

5

78

(a) (b)

FIG. 6. �Color online� �Left� d2I /dV2 spectrum for each atomic
pz orbital contributing to the frontier molecular orbitals of MDCB.
�Right� The numbering and color coding used for the atoms in
MDCB.

1

6 2

3

4

5

7

(a) (b)

FIG. 7. �Color online� �Left� d2I /dV2 spectrum for each atomic
pz orbital contributing to the frontier molecular orbitals of CB.
�Right� The numbering and color coding used for the atoms in CB.
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energy to the neighborhood of the LUMO levels. Most dra-
matically, the sign of the d2I /dV2 is positive everywhere,
except at atom 5, where it is essentially zero. Evidently, the
substrate induces states at around Fermi energy, which tends
to favor increasing LDOS at negative energies, creating a
�strongly atomic-orbital-dependent� positive background.
This is a striking counter example of a case where it is not
sufficient to consider merely the electron-vibration coupling
and mutual contribution of atomic orbitals to frontier orbit-
als.

As in the case of CB at negative voltages, MDCB is also
rather robust to band width and position at the wide-band
limit with negative bias voltages. In Fig. 8 �bottom left� we
can see an example, which is very consistent with the spec-
trum in Fig. 6. Here the signal is clearly strongest at carbon
1, with moderate signal strengths at carbons 3 and 5 and at
the chlorines. This demonstrates—even more clearly than
CB—how the contrast of the IETS signal is strongly related
to the electronic structure of the molecule if the substrate
effect is weak. In this case, however, there exists no straight-
forward relation to the pattern of molecular orbitals since for
MDCB, the pz orbitals of chlorine atoms contribute to all the
FOs. The contribution to both of the occupied FOs is espe-
cially strong.

The mapping changes noticeably in the case of a 1 eV
Lorentz LDOS with the mean at either the Fermi energy or
close to the LUMO states. An example is shown in Fig. 8
�bottom right�. The IETS signal at carbons 3 and 5 vanishes
almost completely but now the signal is most strongly visible
around carbons 1, 2, and 6. Again, the derivative of the sig-
nal also changes, with the same reasons as for the CB mol-

ecule. These effects are thus very similar to the case of CB,
showing how substrates with peaked LDOS features very
strongly distort the IETS map of the adsorbed molecule.

At positive bias voltages, even the wide-band d2I /dV2

mappings become more sensitive to the width and the posi-
tion of the substrate band, although the general features re-
main more or less the same in switching between constant
LDOS and Lorentz band. It is notable that according to the
spectra with a wide-band substrate, the local signal of chlo-
rine atoms remains negative also at positive voltages, which
seems to exist even at the narrow-band case.

The IETS map of CB in the case of a 5 eV Lorentz dis-
tribution centered around the Fermi energy is shown in Fig. 9
�top left�. The carbon atom at the end opposite to chlorine
seems to be clearly distinguishable from the rest of the mol-
ecule, which is rather expected by considering the IETS
spectrum for the molecule. We also see a very clear carrier
wave effect. It is also notable that almost the rest of the
molecule gives a negative signal. The only exception is the
carbon adjoined to the Cl.

The most drastic difference with a wider LDOS can be
found when a Lorentz 5 eV distribution is centered around
the LUMO states, as seen in Fig. 9 �top right�. Here the
relative strengths of the positive areas have grown to engulf
the negative area completely. The signal is now strongly vis-
ible only at carbon 5, at the opposite end of the molecule
from the location of the actual vibration. On the other hand,
shifting the substrate states toward higher energies also
seems to cause an almost constant positive shift of the local
d2I /dV2.

For MDCB, the mappings with positive bias voltages are
somewhat more stable at the wide-band limit than for CB.

(a) (b)

(d)(c)

FIG. 8. �Color online� Constant height mappings of d2I /dV2 at
2 Å above the plane of the CB and MDCB molecules at negative
bias voltages �−48 mV for MDCB and −50 mV for CB�. The CB
images �top row� have been calculated with Lorentz substrates of
widths 5 eV �top left� and 1 eV �top right�. The MDCB images
�bottom row� have been calculated with Lorentz substrates of
widths of 5 eV �bottom left� and 1 eV �bottom right�. In all images
the substrate LDOS is centered around the Fermi energy. The car-
bon atoms have been marked with crosses and the chlorines with
squares.

(a) (b)

(c) (d)

FIG. 9. �Color online� Constant height mappings of d2I /dV2 at
2 Å above the plane of the CB and MDCB molecules at positive
bias voltages �48 mV for MDCB and 50 mV for CB�. The CB
images �top row� have been calculated with Lorentz substrates of
width 5 eV, centered around the Fermi energy �top left� and at 2.5
eV �top right�. The MDCB images �bottom row� have been calcu-
lated with Lorentz substrates of width 5 eV, centered around the
Fermi energy �bottom left� and at 2.5 eV �bottom right�. The carbon
atoms have been marked in the images with crosses and the chlo-
rines with squares.
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Figure 9 �bottom left� shows a mapping of the IETS spectra
of MDCB with a 5 eV Lorentz LDOS centered around the
Fermi energy. The spectrum of Fig. 6 would anticipate strong
negative contrast at the chlorines, which is also the case here.
In addition, carbons 3 and 5 should give a strong positive
contrast, as well as carbon 1—this is clearly the case in the
map. Notably, there seems to be a slightly constructive inter-
ference between carbons 3 and 5 at positive energies, and
hence the bright pattern is extended to carbon 4, which itself
should give a weak signal. On the other hand, a destructive
interference seems to invert the contrast of the inside of the
molecule.

As the center of the substrate band is shifted from the
Fermi energy to the energy of the LUMO level, the mapping
once again changes, although less drastically. Figure 9 �bot-
tom right�, shows a mapping for a 5 eV Lorentz LDOS cen-
tered around the LUMO states. Also in this case, shifting the
substrate band toward higher energies generally tends to shift
the local IETS signal to a positive direction. This emphasizes
the signal from carbons 1, 3, and 5. On the other hand, the
signal is once again very weak at the actual location of the
vibration itself.

With 1 eV wide distributions the IETS mappings at posi-
tive bias voltages get totally erratic, varying greatly with the
shape and centering of the LDOS of the substrate. On sub-
strates with peaked LDOS properties, the visibility of the
IETS signal at different positions greatly depends on the
structure of the substrate, and accurate modeling of the sub-
strate is essential.

V. CONCLUSIONS

In this paper, we have derived Green’s-function-based in-
struments for analyzing IETS-STM experiments. We have
also shown, how the effect of the substrate can, in a rather
general form, be modeled as a self-energy matrix of the ad-
sorbed molecule. A more fundamental theoretical result here
is to derive consistent expressions for the elastic and inelastic
effects of the electron-vibration coupling to the electronic
Green’s function both in the atomic-orbital basis and in the
real-space displacement basis of the molecular vibrations.
The benefit of this real-space decomposition is that we can
separately consider a mechanical perturbation to a certain
bond and its effects on the electronic structure at any chosen
position.

From a physical point of view, we find a carrier wave
effect, where the electronic structure can transfer the effect
of a local electron-vibration coupling spatially quite far away
within the molecule. We emphasize that the vibration itself is
not transferred anywhere but its effect on the electronic
structure is as delocalized as the molecular orbitals to which
the vibration is coupled.

Considering a few model examples, we show that the car-
rier wave effect can be distinguished from the IETS experi-
ments in the case of a substrate with little structure around
the Fermi energy. In case of a strongly structured substrate
the electronic states, which are additionally induced within
the energy gap, make it difficult to separate different ingre-
dients of the IETS pattern. A practical application of the

present analysis is that combining standard topographic STM
mapping with IETS mapping could help in determining the
orientation of the adsorbed molecule. The derived formalism
also gives an insight to reversed situations, such as how the
STM tip should be positioned so that the STM tunneling
current would excite vibrational modes most efficiently,
which may be relevant information, e.g., in tip-induced tau-
tomerization or isomerization.33,34 Therefore, this formalism
also describes the causal connection between an electronic
perturbation and a subsequent mechanical response.
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APPENDIX: ELECTRON-VIBRATION COUPLING IN
TIGHT-BINDING BASIS

In the following, we consider the electron-vibration self-
energy explicitly in tight-binding basis for electrons and
atomic displacement basis for molecular vibrations. Apart
from the used basis, the results are rather commonly used but
the motivation here is to emphasize how they should appear
in this kind of local basis. There are many subtleties concern-
ing many-body and nonequilibrium effects related to
electron-vibration coupling, which are not discussed here in
full detail, and we refer to more advanced treatises about the
topic, e.g., Refs. 19, 20, and 37. The present problem con-
cerns nonresonant tunneling at low voltages, which keeps the
problem close to equilibrium; in addition the low density of
electron states at the relevant voltages also implies relatively
weak electron-vibration coupling, which makes use of free
vibrations well grounded.

We assume the set of equilibrium positions �RI� and dis-
placements �uI� for the ions so that the index I contains the
index of an atom combined to the x, y, and z components of
the position/displacement vector. We utilize the canonical
transformation from the displacement uI to the generalized
coordinates Qq,

�Qq = �q�I�uI
�mI =� �

2�q
�aq + a−q

† �

Pq = �q�I�
pI

�mI

= i���q

2
�aq

† − a−q� ,� �A1�

where we also introduce the standard second quantization
�for a general reference see Ref. 35�. aq�aq

†� is the annihila-
tion �creation� operator of the phonon of the mode q and �q
is the frequency of the mode. �I �q� is the projection of the
vibrational eigenstate q onto the direction I, Qq is the corre-
sponding generalized coordinate, and mI is the mass of the
atom under consideration. Note also the Einstein summation
over I.
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This allows us to couple the vibrational Hamiltonian to
the electronic Hamiltonian, where the displacement of ions
can be taken into account to the first order,

H� 	 H���RI��c�
†c +

�V�

�RI
uIc�

†c, �A2�

where V� is the hopping integral between orbitals � and .
Hence, the total Hamiltonian is of the form

H = V��c�
†c� + MI

��I�q�Qqc�
†c +

1

2
P−qPq +

�q
2

2
Q−qQq,

�A3�

where c�
†�c�� is the creation �annihilation� operator for an

electron at site � ���, MI
�= 1

�mI

�V�

�RI
and we use the conven-

tion Qq
�=Q−q and Pq

�= P−q.
The corresponding equations of motion for the operators

are the following:

�i�ċ� = V��c� + MI
��I�q�Qqc

Ṗq = − �q
2Q−q − MJ

���J�q�c�
†c�

Q̇q = P−q,
� �A4�

where the two latter can be combined,

Q̈q + �q
2Qq = − MJ

���q�J�c�
†c�. �A5�

For the inhomogenous equation Eq. �A5�, a special solution,
i.e., the fluctuation from the equilibrium value of Qq�t�=Qq

0

=0, can be obtained using the kernel function Kq��� where
�= t− t�,

Qq
sp�t� = − MJ

���q�J�
 Kq�t − t��c�
†�t��c��t��dt� �A6�

with a kernel

Kq�t − t�� = �
i

�
Qq�t�Qq

��t�� , t � t�

i

�
Qq

��t��Qq�t� , t� � t� �A7�

from the Green’s function equation for Eq. �A5�, where the
kernel includes the vibration operators. In constructing an
effective electron-electron vibration mediated interaction, the
operator form of the kernel is conventionally replaced by its
expectation value

Dq
���� =

i

�
�Qq�t�Qq

��t��� , t � t�

Dq
���� =

i

�
�Qq

��t��Qq�t�� , t� � t ,

�A8�

which defines the Green’s function D���� for interacting vi-
brations �Note that we mainly follow the D� and G� nota-
tion of, e.g., Ref. 36 appropriate to nonequilibrium Keldysh
Green’s functions, although the aim is at deriving self-energy
terms for a retarded equilibrium Green’s function�.

After replacing Kq��� with Dq
���� in Eq. �A6� and insert-

ing the latter to the electron-vibration term of Eq. �A3�, an

effective phonon mediated electron-electron coupling is in-
troduced,

He−v = − �
 DIJ���c�
†�t�c�t�c�

†�t��c��t��dt� �A9�

with DIJ= �I �q�Dq�q �J� for a renormalized vibration Green’s
function in local basis.

In the many-body framework, the integrand of the
electron-electron interaction term Eq. �A9� can be expanded
to a series of Feynman diagrams. In self-consistent Born ap-
proximation, only the term

�DIJ���c�
†�t�c��t���c�t�c�

†�t���

is considered20,36 since the Hartree term with single time
Green’s functions is found to make a only small shift to the
Hamiltonian. On further elaboration of Eq. �A9�, we apply
the interacting Green’s function for electrons,

G�
� ��� = −

i

�
�c�t�c�

†�t��� , t � t�

G�
� ��� =

i

�
�c�

†�t��c�t�� , t� � t

�A10�

and we end up to a one-electron self-energy term

���
e−v��� =

�

i
��I�q��Dq

����G�
� ���� + Dq

����G�
� �����− ���

��q�J� . �A11�

It should be notified here that both the vibration and electron
Green’s functions are renormalized, i.e., they should be self-
consistently calculated for the interacting system. However,
in many cases �see, e.g., Refs. 20 and 37�, a weak electron-
vibration coupling is assumed to justify the usage of the
Green’s function for noninteracting vibrations.

We start discussing the Green’s function D� from free
vibration Green’s functions, D0�. If we apply the transfor-
mation of Eq. �A1� and take the thermal average of the oc-
cupation numbers, the vibration Green’s function turns out to
be

Dq
0���� =

i

2�q
��1 + nq�e�i�q� + nqe�i�q��=i
 1

2�
��1

+ n����e�i�� + n���e�i����� − �q�d� .

�A12�

Hence in the atomic coordinate basis

DIJ
0���� = i
 gIJ

0 ���
2�

��1 + n����e�i�� + n���e�i���d�

�A13�

with the �vibrational� density-of-states matrix

gIJ
0 ��� = �I�q��� − �q��q�J� . �A14�

The obtained free vibration Green’s function can, in prin-
ciple, be converted into the renormalized vibration Green’s
function using Dyson’s equation
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D = D0 + D0�D , �A15�

where � is the susceptibility term calculated from electron
and hole Green’s functions �see, e.g., Ref. 19�. From this
equilibrium Green’s function one could extract the renormal-
ized density of states g��� and utilize Eq. �A13� again, in
order to approximate the renormalized kinetic Green’s func-
tion D�.

Assuming we have obtained the renormalized Green’s
functions for both the electrons and vibrations, it is straight-
forward to write an equation for the “greater” self-energy,

���
� ��� = ��
 gIJ���

2�
��1 + n����e−i/����+E���

+ n���ei/����−E����G�
� �E��d�dE�, �A16�

where according to fluctuation-dissipation theorem �which
couples equilibrium Green’s function to the kinetic Green’s
function�,19 − i

�G�
� �E�= �1− f�E��
��E� �and i

�G�
� �E�

= f�E�
��E�� with the density matrix 
��E��= � �k��E�
−Ek��k ��� and the Einstein summation over k. The density
matrix, in general, is that of the interacting system.

Let us Fourier transform this for ��0 with a positive
convergence parameter �,

���
� �E� = − i�
 
 gIJ���

2�
G�

� �E��

� 1 + n���
E − �� − E� + i�

+
n���

E + �� − E� + i�
�d�dE�.

�A17�

Let us make a change in variables E�=E�+�� to the first
part of Eq. �A17� and E�=E�−�� to the second. This makes
the convolution more visible,

���
� �E� =
 dE�

− i�

E − E� + i�

 gIJ���

2�
��1 + n����

�G�
� �E� − ��� + n���G�

� �E� + ����d� .

�A18�

Comparing this to the equation of the Hilbert transformation,
the imaginary part of the greater self-energy can be ex-
tracted,

���
� �E� = ��
 gIJ���

2�
��1 + n����G�

� �E − ���

+ n���G�
� �E + ����d� , �A19�

where ���E�=−i�1− f�E��I���E��.
The same procedure can be applied to the advanced part

and the result for the imaginary part is

���
� �E� = ��
 gIJ���

2�
��1 + n����G�

� �E − ��� + n���G�
� �E

+ ����d� �A20�

with ���E�= if�E�I���E��.

Combining these two we get the imaginary part of the
total electron-vibration self-energy

I����
e−v�E�� = − ���
 gIJ���

2�
�G�

� �E − ���

+ G�
� �E + ����d� �A21�

with − i
�G�

� �E�= �1+n���− f�E��
��E� with and − i
�G�

� �E�
= �n���+ f�E��
��E�.

The total self-energy is then obtained by the Hilbert trans-
formation: hence, the coupling Hamiltonian can be embed-
ded into the electronic Hamiltonian as an energy dependent
self-energy. The last steps of the previous derivation are par-
allel to the arguments of Refs. 15 and 36–38 but the result is
shown in a different basis.

In this work we assume that f�E�= f0�E� and n���
=n0���, i.e., the nonequilibrium occupation density does not
deviate from the equilibrium statistics. Furthermore, we use
the limit of T=0 and thus Eq. �A21� is approximated by

I����
e−v�E�� 	 − ���
 gIJ���

2�
���E − ���
��E − ���

+ ��− E − ���
��E + ����d� , �A22�

where the zero level of energy has been set to local chemical
potential, which at the equilibrium limit is equal to the Fermi
energy of the substrate. Hence, the imaginary part is propor-
tional to the convolution of the density of states of vibrations
with the occupied and unoccupied electronic states sepa-
rately. This formula is very handy in deriving generic forms
of self-energy using a certain typical form of electronic and
vibrational spectra. This is a rather standard way to approxi-
mate the electron-vibration coupling in photoemission spec-
troscopy at low temperatures.21

To demonstrate, how Eq. �A22� is used, we show the ge-
neric result for Einstein model for vibrational density of
states, gIJ���=��−�q�, and a constant electronic density
of states, 
��E�=
. The convolution of Eq. �A22� is readily
seen to be

I����
e−v�E�� 	 − 


���

2�q
���E − ��q� + ��− E − ��q�� .

�A23�

This can be transformed into the total self-energy by Hilbert
transformation

���
e−v�E� = −

1

�
lim

W→�



−W

W
I����

e−v�E���
E − E� + i�

dE�

= 

��

2�q
ln���q − E − i�

��q + E + i�
� . �A24�

This equation falls into the family of generic self-energies
which are used to produce the phonon kink to in modeling of
electron spectroscopies.21,39
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